

www.elsevier.nl/locate/jorganchem

Journal of Organometallic Chemistry 598 (2000) 304-312

Addukte der Ethene Me₂E=C(SiMe₃)₂ (E = Si, Ge, Sn) mit LiR und RN₃: Wie rasch bilden sie sich?^{\ddagger}

N. Wiberg *, T. Passler, S. Wagner

Department Chemie der Universität München, Butenandtstrasse 5-13 (Haus D), D-81377 Munich, Germany

Eingegangen am 20 August 1999; eingegangen in revidierter Form am 17 November 1999

Dedicated to Professor Dr Heinrich Vahrenkamp on the occasion of his 60th birthday.

Abstract

Unsaturated compounds $Me_2E=C(SiMe_3)_2$ (E = Si, Ge, Sn) are formed as short-lived intermediates by reaction of $Me_2EX-CBr(SiMe_3)_2$ with LiR via $Me_2EX-CLi(SiMe_3)_2$ (X = electronegative substituent; R = organyl) and — in the absence of trapping reagents — react with $Me_2EX-CLi(SiMe_3)_2$ and LiR (as long as present) under formation of cyclobutanes $[-Me_2E-C(SiMe_3)_2-]_2$ as well as adducts $Me_2ER-CLi(SiMe_3)_2$ of $Me_2E=C(SiMe_3)_2$ and LiR. In the presence of an excess of organyl or silyl azides RN₃, as well as lithium organyls or silyls LiR, which indeed act as very active trapping reagents for $Me_2E=C(SiMe_3)_2$ with formation of [3 + 2] cycloadducts $Me_2E=C(SiMe_3)_2 \cdot RN_3$ and adducts $Me_2ER-CLi(SiMe_3)_2$, the formation of cyclobutanes and adducts is suppressed in the first case, whereas adducts are formed exclusively in the second case. As a result of determination of relative amounts of the products, formed by addition of $Me_2SiBr-CBr(SiMe_3)_2$ to two different trapping reagents LiR and LiR' or LiR and RN₃ in Et₂O, relative rates of the reactions of LiR or RN₃ with the silene $Me_2Si=C(SiMe_3)_2$ are determined. Hereafter the insertion reactivity of LiR and the [3 + 2] cycloaddition reactivity of RN₃ decreases when the bulkiness of R increases (decreasing reactivity in the order LiMe > LiⁿBu > LiPh > Li'Bu; LiMe > LiCH(SiMe_3)_2 > LiC(SiMe_3)_3; Me_3SiN_3 > 'Bu_2MeSiN_3 > Ph_3SiN_3 > 'Bu_3SiN_3). The influences of electronic effects are obviously smaller than those of steric effects (decreasing reactivity in the order LiC(SiCIMe_2)(SiMe_3)_2 > LiC(SiBrMe_2)(SiMe_3)_2 > LiC(SiMe_3)_3; 'Bu_2MeSiN_3 > Me_3SiN_3).

Zusammenfassung

Ungesättigte Verbindungen des Typs $Me_2E=C(SiMe_3)_2$ (E = Si, Ge, Sn) bilden sich als kurzlebige Zwischenstufen bei der Reaktion von $Me_2EX-CBr(SiMe_3)_2$ mit LiR über $Me_2EX-CLi(SiMe_3)_2$ (X = elektronegativer Substituent; R = Organyl). In Abwesenheit von Fängerreagenzien reagieren diese mit $Me_2EX-CLi(SiMe_3)_2$ und LiR (solange vorhanden) unter Bildung sowohl von Cyclobutanen [$-Me_2E-C(SiMe_3)_{-2}$] als auch von Addukten $Me_2ER-CLi(SiMe_3)_2$ aus $Me_2E=C(SiMe_3)_2$ und LiR. In Anwesenheit sowohl eines Überschusses an Organyl- oder Silylaziden RN₃ als auch an Lithiumorganylen oder -silylen LiR, welche als sehr aktive Fängerreagenzien mit $Me_2E=C(SiMe_3)_2$ [3 + 2]-Cycloaddukte $Me_2E=C(SiMe_3)_2\cdot RN_3$ und Addukte $Me_2ER-CLi(SiMe_3)_2$ bilden, entstehen in ersterem Falle nur untergeordnet Cyclobutane und Addukte, in letzterem Falle ausschließlich Addukte. Aus der Bestimmung der relativen Produktmengen, die bei der Addition von $Me_2SiBr-CBr(SiMe_3)_2$ an zwei verschiedene Fängerreagenzien LiR und LiR' oder LiR und RN₃ in Ether gebildet werden, lassen sich die relativen Geschwindigkeit en der Reaktionen von LiR oder RN₃ mit dem Silaethen $Me_2Si=C(SiMe_3)_2$ bestimmen. Hiernach nimmt die Insertionsgeschwindigkeit von LiR und die [3 + 2]-Cycloadditionsgeschwindigkeit von RN₃ ab, wenn die Sperrigkeit von R ansteigt (abnehmende Reaktivität in der Reihe LiMe > Li'Pau > LiPh > Li'Bu; LiMe > LiCH(SiMe_3)_2 > LiC(SiMe_3)_3; Me_3SiN_3 > 'Bu_2MSiN_3 > 'Bu_2MSiN_3 > 'Bu_2MSiN_3 > 'Bu_2MSiN_3 > 'Bu_2MSiN_3 > 'Bu_2CISiN_3; Me_3CN_3 > Me_3SiN_3). Der Einfluß von elektronischen Effekten ist offensichtlich kleiner als der von sterischen Effekten (abnehmende Reaktivität in Richtung LiC(SiCIMe_2)(SiMe_3)_2 > LiC(SiBrMe_2)(SiMe_3)_2 > LiC(SiMe_3)_3; 'Bu_2MESiN_3 > 'Bu_2CISiN_3; Me_3CN_3 > Me_3SiN_3). © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Silaethene; Germaethene; Stannaethene; Insertionen; [3 + 2]-Cycloadditionen; relative Reaktionsgeschwindigkeiten

^{*} See Ref. [1].

^{*} Corresponding author. Tel.: +49-89-21807456; fax: +49-89-21807865.

E-mail address: niw@cup.uni-muenchen.de (N. Wiberg)

1. Einleitung

In einer vorstehenden Publikation [2] wurde aufgezeigt, daß die Reaktionen der Brommethane $Me_2EX-CBr(SiMe_3)_2$ (E = Si, Ge, Sn; X = elektronegativer Rest wie Hal, OPh) mit äquimolaren Mengen an Alkalimetallorganylen oder -silylen MR (R z.B. "Bu, ^tBu, Ph, CH(SiMe₃)₂, C(SiMe₃)₃, Si^tBu₃) in Pentan, Diethylether oder Tetrahydrofuran auf dem Wege über das Silaethen ('Silen') Me₂Si=C(SiMe₃)₂ (1), das Germaethen ('Germen') Me₂Ge=C(SiMe₃)₂ (2) sowie das Stannaethen ('Stannen') $Me_2Sn=C(SiMe_3)_2$ (3) zu Dimeren [-Me₂E-C(SiMe₃)₂-]₂ der reaktiven Intermediate 1, 2 und 3 bzw. zu Addukten Me₂ER-CM(SiMe₃)₂ von MR an die Zwischenprodukte 1, 2 und 3 führen. In Anwesenheit reaktiver Fänger für 1, 2, 3 (z.B. Organylund Silylazide) entstehen darüber hinaus bzw. ausschließlich Abfangprodukte ungesättigten der Verbindungen.

Das Schema 1 faßt die besprochenen Reaktionen der Brommethane MR zusammen mit (k = Geschwindigkeitskonstanten der einzelnen Reaktionsschritte). Ersichtlicherweise bildet der Ersatz von Br der Brommethane Me2EBr-CBr(SiMe3)2 gegen M der Metallorganyle und -silyle MR den einleitenden Reaktionsschritt. Dieser erfolgt sehr rasch, so daß wohl in der Regel gilt: $k_1 > k_{2-6}$ [2]. Das sich anschließende, durch k_2 und k_3 bzw. $K = k_2/k_3$ bestimmte Gleichgewicht $Me_2EX-CM(SiMe_3)_2 \Leftrightarrow 1, 2, 3 + MX$ liegt nach bisherigen Ergebnissen unabhänig von der Art des Elements E und des elektronegativen Substituenten sowie auch des genutzten Solvens auf der Seite von Me2EX-CM- $(SiMe_3)_2$ [2].

Schema 1. Bildung und Thermolyse von Me₂EX–CM(SiMe₃)₂ in Aboder Anwesenheit von Fängern für 1, 2, 3 (k_1 bis k_6 = Reaktionsgeschwindigkeitskonstanten).

Es stellte sich in diesem Zusammenhang die Frage nach den relativen Geschwindigkeiten der Addition von Metallorganylen (einschließlich Me₂EX–CM(SiMe₃)₂ \equiv MR') und anderen — mit MR um 1, 2, 3 konkurrieren-Fängern (insbesondere Azide den RN_3). Nachfolgend sei nunmehr zunächst auf die Geschwindigkeitsverhältnisse der Reaktionen von Me2EX-CBr(SiMe₃)₂ mit MR in Anwesenheit zugesetzter ('externer') Fänger F (Bildung von Abfangprodukten 1·F, 2.F. 3.F) sowie in Abwesenheit derartiger Fänger eingegangen (als 'interne' Fänger wirken dann MR' bzw. MR; Bildung von Dimeren (1)₂, (2)₂, (3)₂ bzw. Addukten Me₂ER-CM(SiMe₃)₂). Anschließend wird über relative Reaktivitäten von MR sowie RN₃ hinsichtlich 1 berichtet.

2. Geschwindigkeitsverhältnisse der Abfangreaktionen von 1, 2 und 3

Thermolysiert man $Me_2EX-CM(SiMe_3)_2 \equiv MR'$ in Anwesenheit von Fängern F, so konkurrieren diese laut Schema 1 — mit MX und MR' um die aus den Edukten freigesetzten Intermediate 1, 2 und 3. Demgemäß werden die Geschwindigkeiten der Fängerreaktionen nicht nur durch die Geschwindigkeiten $RG = k_2 c_{MR'}$ und $RG = k_6 c_F c_{1,2,3}$ der Bildung der Intermediate und ihrer Weiterreaktion mit den Fängern, d.h. durch die Geschwindigkeitskonstanten und Konzentrationen k_2 , k_6 , $c_{MR'}$, c_F , sondern auch durch die Geschwindigkeiten $RG = k_3 c_{MX} c_{1,2,3}$ sowie RG = $k_4 c_{\rm MR'} c_{1,2,3}$ der Rückbildung der Quellen Me₂EX-CM(SiMe₃)₂ für 1, 2, 3 sowie der Bildung der 'Cyclobutane' $(1)_2$, $(2)_2$, $(3)_2$, d.h. durch die Konstanten k_3 , k_4 und die Konzentration c_{MX} und $c_{MR'}$ bestimmt. Für reaktive Fänger gilt allerdings häufig $k_6 > k_2$, k_3 , k_4 , so daß die Abfanggeschwindigkeiten wesentlich durch die Bildungsgeschwindigkeiten von 1, 2, 3 aus $Me_2EX-CM(SiMe_3)_2$ festgelegt werden.

2.1. Reaktionen von 1, 2, 3 mit Fängern

Nach unseren Studien vermindert sich die Geschwindigkeit der nach $2Me_2GeX-CLi(SiMe_3)_2 \Leftrightarrow$ $Me_2Ge=C(SiMe_3)_2$ (2) + $Me_2GeX-CLi(SiMe_3)_2$ + LiX- \rightarrow [-Me₂Ge-C(SiMe₃)₂-]₂ [(2)₂] + 2LiX in Et₂O und Fängerabwesenheit unter Bildung von (2)₂ erfolgenden Thermolyse von $Me_2GeX-CLi(SiMe_3)_2$ (X = OMe, OPh; vgl. Schema 1) mit dem Reaktionsfortschritt, da die Geschwindigkeit der Rückbildung des Edukts aus 2 und LiX mit zunehmender Konzentration des Alkoholats wächst $(k_3 > k_4)$. Trägt man demgemäß $\ln(c/c_a)$ $(c_a,$ c = Eduktkonzentrationen zu Reaktionsbeginn und zuden Zeiten t) gegen die Reaktionszeit t im Sinne einer 1. Reaktionsordnung auf, so ergibt sich anstelle einer Geraden eine Linie mit abnehmender Steigung (Abb.

Abb. 1. Kinetik (ausgewertet nach 1. Reaktionsordnung) der Thermolyse von Me₂GeOMe–CLi(SiMe₃)₂ (**2**·LiOMe) und Me₂GeOPh–CLi(SiMe₃)₂ (**2**·LiOPh) in Et₂O ohne DMB und mit DMB in 23fachem (**2**·LiOMe) bzw. 15fachem Überschuß (**2**·LiOPh).

1). Demgegenüber erfolgen die Thermolysen von Me₂GeX–CLi(SiMe₃)₂ (X = OMe, OPh) in Et₂O und Anwesenheit von DMB im Überschuß nach 1. Reaktionsordnung unter ausschließlicher Bildung von DMB-Abfangprodukten [3] (vgl. Abb. 1; $k_3c_{MX}c_2$, $k_4c_{MR}c_2 < k_6c_Fc_2$).

Der aufgezeigte Sachverhalt gilt allgemein: Die Thermolysen der Quellen Me₂EX-CM(SiMe₃)₂ für 1, 2, 3 verlaufen unabhängig von den Fängern für 1, 2, 3 gleich rasch und nach 1. Reaktionsordnung, sofern unter vergleichbaren Bedingungen gearbeitet wird (E, M, X, Solvens, Temperatur übereinstimmend) und die Fänger genügend reaktiv sind $(k_6 \gg k_2)$ oder in großem Überschuß vorliegen $(c_F \gg c_{MX}, c_{MR'})$. Die Abfanggeschwindigkeiten werden dann nur durch die Bildungsgeschwindigkeiten von 1, 2, 3 aus Me₂EX-CM-(SiMe₃)₂ bestimmt, die wiederum sehr stark von der Art der Quellen Me₂EX-CM(SiMe₃)₂ und der des Solvens abhängen. Nach unseren Ergebnissen wächst die Zersolvensgelösten fallsneigung der Verbindungen $Me_2EX-CLi(SiMe_3)_2$ in Richtung E = Si, Ge, Sn bzw. X = OMe, OPh, F, Br bzw. Solvens = Pentan, THF, Et₂O [2].

Interessanterweise erhöhen sich nach unseren Studien die Geschwindigkeiten von Abfangreaktionen, die zweistufig über polare Zwischenstufen erfolgen (z.B. Insertionen in MR, MX) bei Ersatz von Pentan durch Et₂O und von Et₂O durch THF stark, während sich in gleicher Richtung die Geschwindigkeiten von einstufig (konzertiert, synchron) verlaufenden Abfangreaktionen wie [3 + 2]- und [4 + 2]-Cycloadditionen wenig verändern. Tropft man demgemäß zu Me₂EBrCBr(SiMe₃)₂ (E = Si, Ge) in Et₂O und dem reaktionsträgen Fänger 'Bu₃SiN₃ oder zu Me₂SiBr–CBr(SiMe₃)₂ in THF und dem mäßig reaktiven Fänger DMB jeweils bei – 78°C Butyllithium Li"Bu in Hexan oder Phenyllithium LiPh in Cyclohexan/Et₂O, so bilden sich überwiegend oder ausschließlich die Cyclobutane (1)₂ bzw. (2)₂, während in Pentan in ersterem und Et₂O in letzterem Falle bevorzugt 'Bu₃SiN₃- bzw. DMB-Abfangprodukte enstehen [4,5]. Da die Reaktivitäten der einstufig reagierenden Fänger mit der Temperatur stärker anwachsen als die der mehrstufig reagierenden Fänger, verlaufen bei geeignet hohen Temperaturen ausschließlich die Synchronreaktionen.

Abfangprodukte der Intermediate 1, 2, 3 mit Fängern bilden sich nur untergeordnet, falls diese ausgesprochen unreaktiv sind (z.B. *cis*-Pentadien) oder falls die mit den Fängern um die Intermediate konkurrierenden Metallierungsprodukte Me₂EX–CM(SiMe₃)₂ vergleichsweise reaktiv sind (z.B. Me₂SiBr–CLi(SiMe₃)₂ in THF, vgl. [2] und Abschnitt 3). Man erhält dann trotz Fängeranwesenheit hauptsächlich oder ausschließlich 'Cyclobutane' ($k_6 < k_2$).

2.2. Reaktionen von 1, 2, 3 mit $Me_2EX-CM(SiMe_3)_2\equiv MR'$

Innerhalb der Gruppe der Fänger für 1, 2 und 3 kommen den Metallierungsprodukten Me₂EX-CM-(SiMe₃)₂ mittlere Fängerqualitäten zu (vgl. [5,6] und Tabelle 1). Sie konkurrieren deshalb mit MX um die Intermediate (vgl. Schema 1). Ist MX ein besserer $Me_2EX-CM(SiMe_3)_2$ Fänger als $(k_3 > k_4),$ so beobachtet man ein Verhalten, das der Thermolyse von $Me_2GeX-CLi(SiMe_3)_2$ (X = OMe, OPh) in Abwesenheit von DMB entspricht (Abb. 1) und z.B. auch im Falle der Thermolyse von $Me_2SiBr-CLi(SiMe_3)_2 \equiv$ 1-LiBr in THF (vgl. [4]) und in Pentan (vgl. Reaktionen von Li'Bu mit Me₂SiBr-CBr(SiMe₃)₂ [2]) aufgefunden wird, da offensichtlich die Verbindung 1.LiBr in THF sehr beständig ($k_3 = \text{groß}$), in Pentan sehr insertionsträge ist ($k_4 =$ klein). Rascher als aus 1·LiBr in THF und Pentan und zudem nach 1. Reaktionsordnung entsteht $(1)_2$ aus 1·LiBr in Et₂O, so daß wohl nunmehr MX ein schlechterer Fänger als Me₂EX-CM(SiMe₃)₂ ist $(k_3 < k_4)$ bzw. zunächst $k_3 c_{\rm MX} c_1 < k_4 c_{\rm MR'} c_1$). Entsprechendes gilt für die Thermolyse von 1.LiF, 1.LiCl und 1.LiI in Et₂O [4]. Des weiteren wurde gefunden, daß sich die 'Cyclobutane' aus Me2GeX-CLi(SiMe₃)₂ in Et₂O rascher (d.h. bei tieferen Temperaturen) als aus Me₂SiX-CLi(SiMe₃)₂ in Et₂O bilden (gleiches X); auch erfolgt in beiden Fällen die Cyclobutanbildung in THF langsamer als in Et₂O [2,4,7]. Schließlich entstehen die Cyclobutane aus Me₂EBr-CLi(SiMe₃)₂ rascher, aus Me₂EOPh-CLi-(SiMe₃)₂ langsamer als aus Me₂EF-CLi(SiMe₃)₂ (gleiches E).

Tabelle 1

Relative Geschwindigkeiten (Reaktivitäten) $R_{rel.}$ der Reaktion von Me₂Si=C(SiMe₃)₂ (1) (erzeugt aus Me₂SiBr-CLi(SiMe₃)₂ in Et₂O bei -78°C) mit Aziden und Metallorganylen (Referenz ist Butadien mit $R_{rel.} \equiv 1$)

[a] H-Übertragung aus Li^tBu. [b] In Pentan; ^tBu-Übertragung aus Li^tBu. [c] Nur qualitativ bestimmt; offensichtlich Reaktivitätserhöhung mit wachsender Elektronegativität von X. [d] Relative Reaktivität von DMB zu Butadien vgl. Lit. [3].

2.3. Reaktionen von 1, 2, 3 mit MR

Alkalimetallorganyle MR stellen reaktive Fänger für 1, 2 und 3 dar $(k_5 = \text{groß})$, doch ist ihre aktuelle Konzentration während des Zutropfens zu Lösungen von Me₂EX–CBr(SiMe₃)₂ \equiv R'Br wegen ihrer sehr hohen Metallierungsgeschwindigkeiten $(k_1 > k_2)$ klein $(c_{\rm MR} =$ klein). Die Mengen der durch Addition von MR an die Intermediate 1, 2 und 3 hervorgehenden Addukte Me₂ER-CM(SiMe₃)₂ (Übergang in Me₂ER-CBr(SiMe₃)₂ möglich [2]) wird hiernach durch die ---temperaturabhängigen — Konstanten k_1, k_2, k_3, k_4 und die Konzentrationen $c_{R'Br}$, $c_{MR'}$, c_{MR} bestimmt. Wie u.a. gefunden wurde ([2,7,8]) bilden sich im Zuge der Syn- $Me_2EX-CM(SiMe_3)_2$ these von aus MR und $Me_2EX-CBr(SiMe_3)_2$ unter vergleichbaren Bedingungen wachsende Mengen an Me₂ER-CM(SiMe₃)₂ in Rich- $MR = LiPh < Li^nBu$ $R'Br = Me_2SiX$ tung und $CBr(SiMe_3)_2 < Me_2GeX-CBr(SiMe_3)_2 < Me_2SnX-CBr$ sowie $Me_2EOPh-CBr(SiMe_3)_2 < Me_2EF (SiMe_3)_2$ $CBr(SiMe_3)_2 < Me_2EBr-CBr(SiMe_3)_2$.

3. Relative Reaktivitäten von MR sowie RN_3 hinsichtlich 1

Nicht nur die durch k2 charakterisierten Bildungsgeschwindigkeiten von 1, 2 und 3 aus Me2-EX-CM(SiMe₃)₂, sondern auch die durch k_6 charakterisierten Geschwindigkeiten der Abfangreaktionen sind sehr unterschiedlich. Dies konnten wir anhand relativer Geschwindigkeiten der [4 + 2]Cycloadditionen und En-Reaktionen organischer Diene und Ene an 1, 2, 3 [3] sowie anhand relativer Geschwindigkeiten der Insertion von 1 in EH-Bindungen von ROH, RSH, RNH₂ usw. [9] bereits zeigen. In ersteren Fällen ergab sich hierbei eine vergleichbare Reaktivitätsfolge der Diene und Ene hinsichtlich 1, 2 und 3 [3]. Die Tabelle 1 gibt nun relative Geschwindigkeiten (Reaktivitäten) $R_{\rm rel}$ der Insertion von 1 in die Li-C-Bindung von lithiumorganischen Verbindungen LiR sowie der [3 + 2]Cycloaddition von 1 an Organyl- und Silylazide RN_3 in Et_2O bei $-78^{\circ}C$ wieder, bezogen auf die Geschwindigkeit der [4+2]-Cycloaddition von 1 an Butadien (vgl. Schema 1; zum Vergleich ist auch $R_{\rm rel.}$ für die [2 + 2]-Cycloaddition von 1 und Ph₂CO sowie für die [4 + 2]-Cycloaddition und En-Reaktion von 1 und DMB unter gleichen Bedingungen wiedergegeben). Es ist anzunehmen, daß die aufgefundene Reaktivitätsfolge der Fänger auch hinsichtlich 2 und 3 zutrifft.

Ersichtlicherweise sind alle untersuchten Fänger RN_3 und LiR hinsichtlich 1 reaktiver als Butadien (rel. Reaktivitätsunterschiede zwischen reaktionsfreudigen und -trägen Fängern RN_3 sowie LiR bis zu 15 000). Sie sind unter den Fängern für 1 zu den reaktiveren zu zählen (reaktionsfreudige und -träge Diene und Ene setzten sich bis zu ca. 3 000mal rascher und bis zu ca. 0.05mal langsamer als Butadien mit 1 um; rel. Reaktivitätsunterschiede somit bis zu ca. 60 000 [3]).

Die Reaktivität sowohl von MR als auch RN3 sinkt mit wachsender Sperrigkeit von R (LiMe > LiⁿBu > $LiMe > LiCH(SiMe_3)_2 > LiC(SiMe_3)_3;$ $LiPh > Li^{t}Bu;$ $Me_{3}SiN_{3} > {}^{\prime}BuMe_{2}SiN_{3} > {}^{\prime}Bu_{2}HSiN_{3} > {}^{\prime}Bu_{2}MeSiN_{3} >$ $Ph_3SiN_3 > 'Bu_3SiN_3$). Die Ergebnisse sprechen für die Bedeutung der Knüpfung einer Bindung zwischen R der Organyle LiR bzw. des R-benachbarten N-Atoms der Azide RN₃ und dem ungesättigten Si-Atom in 1 im Zuge der Bildung der aktivierten Komplexe (erstere Reaktionen verlaufen mehrstufig, letztere einstufig über aktivierte Komplexe [2]). Neben diesen sterischen spielen aber auch elektronische Effekte eine Rolle, wobei erstere Effekte offensichtlich ausschlaggebender sind (z.B. wächst die Basizität von R⁻ der Metallorganyle MR anders als deren Reaktivität in Richtung LiPh < LiMe < Li'Bu < Li'Bu). Doch dürfte die Abnahme der Fängerqualitäten in Richtung LiC- $(SiClMe_2)(SiMe_3)_2 > LiC(SiBrMe_2)(SiMe_3)_2 > LiC$ $(SiMe_3)_3$ bzw. $LiR'/THF > LiR'/Et_2O > LiR'/Pentan$ und ${}^{\prime}Bu_{2}MeSiN_{3} > {}^{\prime}Bu_{2}ClSiN_{3}$ elektronische Ursachen haben. Die unerwartet hohe Fängerqualität des vergleichsweise sperrigeren Azids 'BuN₃ kann möglicherweise damit erklärt werden, daß in aktivierten Komplexen aus 1 und Organylaziden die Bindungsbeziehungen des N-Atoms am Azidende bereits stärker ausgeprägt sind als in aktivierten Komplexen aus 1 und Silylaziden (bezüglich der aktivierten Komplexe vgl. [2]).

4. Experimenteller Teil

Alle Untersuchungen wurden unter strengem Ausschluß von Wasser und Luft durchgeführt. Die Lösungsmittel wurden vor Gebrauch mit Natrium/ Benzophenon oder K/Na-Legierung getrocknet und von Luft befreit. Zur Verfügung standen LiⁿBu in Hexan, LiPh in Benzol/Et₂O bzw. Cyclohexan/Et₂O, Me₃SiN₃, Ph₂CO, 1,3-Dimethylbutadien (DMB). Nach Literaturvorschriften wurden synthetisiert: Me₂EX– CBr(SiMe₃)₂ [4,7,8], 'BuN₃ [10], 'BuMe₂SiN₃ [11], ${}^{t}Bu_{2}MeSiN_{3}$ [5], ${}^{t}Bu_{2}HSiN_{3}$ [5], ${}^{t}Bu_{2}ClSiN_{3}$ [5], ${}^{t}Bu_{3}SiN_{3}$ [12], $Ph_{3}SiN_{3}$ [13].

Die NMR-Spektren wurden mit Multikerninstrumenten der Fa. Jeol FX90 Q (¹H, ¹³C, ²⁹Si: 89.55/22.49/ 17.75 MHz) und GSX 270 (¹H, ¹³C, ²⁹Si: 270.17/ 67.94/53.67 MHz) aufgenommen. Zur Überprüfung der Molekülmassen der isolierten Verbindungen dienten die M⁺- sowie (M⁺ – Me)-Peaks sowie deren Isotopenmuster.

4.1. Reaktionen von $Me_2EBr-CBr(SiMe_3)_2$ (E = Si, Ge) mit MR in organischen Solvenzien bei variablen Temperaturen in Anwesenheit von RN_3

Man tropft zu einer auf T°C gekühlten Lösung von x mmol Me₂EBr-CBr(SiMe₃)₂ (x = 0.3 bis 1.0) und nxmmol RN₃ (n = 1 bis 20; R = 'Bu, Me₃Si, 'BuMe₂Si, ^tBu₂MeSi, ^tBu₂HSi, ^tBu₂ClSi, ^tBu₃Si) in Pentan, Diethylether, Tetrahydrofuran x mmol LiPh in Cyclohexan/Diethylether, LiMe in Diethylether, Li"Bu in Hexan oder Li'Bu in Pentan, erwärmt auf Raumtemperatur, kondensiert alle im Ölpumpenvakuum flüchtigen Anteile ab, versetzt den Rückstand mit 5 ml Pentan, trennt Ungelöstes ab und vermißt die Probe zur Ausbeutebestimmung der Produkte nach Ersatz von Pentan durch C₆D₆ NMR-spektroskopisch (Identifizierung durch Vergleich mit authentischen Proben, vgl. [2,4,5,7] sowie weiter unten). Zur Isolierung und Charakterisierung gebildeter thermolabiler Dihydrotriazole = [2 + 3]-Cycloaddukte von Me₂Si=C(SiMe₃)₂ und RN₃ müssen letztere Operationen bei genügend tiefen Temperaturen durchgeführt werden. Andernfalls entstehen Folgeprodukte der [2 + 3]-Cycloaddukte. Tabelle 2 gibt einige der mit Me2SiBr-CBr(SiMe3)2 durchgeführten Reaktionen — zusammen mit gebildeten Produkten 1.RN3 sowie deren Folgeprodukten wieder. Bezüglich weiterer Umsetzungen sowie auch Reaktionen mit Me₂GeX-CBr(SiMe₃)₂ vgl. [7].

4.1.1. Reaktion von $Me_2SiBr-CBr(SiMe_3)_2$ und ${}^{t}Bu_2HSiN_3$ mit $Li^{n}Bu$

Zu einer auf -78° C gekühlten Lösung von 0.328 g (0.873 mmol) Me₂SiBr–CBr(SiMe₃)₂ und 0.170 g (0.873 mmol) 'Bu₂HSiN₃ in 12 ml Et₂O (**A**) bzw. von 0.370 g (0.983 mmol) Me₂SiBr–CBr(SiMe₃)₂ und 0.940 g (5.07 mmol) 'Bu₂HSiN₃ (**B**) tropft man 0.880 bzw. 0.983 mmol LiⁿBu in 0.5 ml Hexan. Laut ¹H-NMR bei tiefen Temperaturen bildet sich hierbei eine Substanz, bei der es sich offensichtlich um das [2 + 3]-Cycloaddukt von Me₂Si=C(SiMe₃)₂ und 'Bu₂HSiN₃ handelt. — [¹H-NMR (Et₂O, -40°C, iTMS): $\delta = 0.136$ (s; 2 SiMe₃), 0.327 (s; SiMe₂)], das aber oberhalb -10°C unter [2 + 3]-Cycloreversion in (Me₃Si)₂CN₂ (Identifizierung: [5]) und das Silanimin Me₂Si=NSiH'Bu₂ zerfällt, das quantitativ dimerisiert (**A**) oder 'Bu₂HSiN₃ addiert (**B**).

Tabelle 2

Ausbeuteprozente (%) der gebildeten Produkte nach Zugabe von x mmol MR (LiPh in C_6H_{12}/Et_2O , LiMe in Et_2O , LiⁿBu in C_6H_{14} , Li'Bu in C_5H_{12}) zu x mmol Me₂SiBr-CBr(SiMe₃)₂ und y mmol RN₃ (Molverhältnis n = x zu y) in Pentan Pe, Diethylether Et₂O oder Tetrahydrofuran THF (c = Konzentration von vorgelegtem Me₂SiX-CBr(SiMe₃)₂) bei T°C und Erwärmung des Reaktionsgemischs auf Raumtemperatur ^a

MR	RN ₃ Molv. <i>n</i>	Molv. n	Solvens	$c \pmod{1^{-1}}$	T (°C)	Produkte (%)	
						R″Br	1•RN ₃
LiMe	Me ₃ SiN ₃	1/12	Et ₂ O	0.03	- 78	5	95 ^b
		1/12	THF	0.03	-78	6	94 ^ь
	^t Bu ₂ MeSiN ₃	1/12	Et_2O	0.06	-78	18	82
Li″Bu	^t BuN ₃	1/3	Et ₂ O	0.04	-78	0	100
	Me ₃ SiN ₃	1/11	Pe	0.03	-78	4	96 ^ь
	^t Bu ₂ MeSiN ₃	1/3	Et_2O	0.06	-78	0	100
	2 5	1/3	THF	0.05	-78	0	100
	^t Bu ₂ HSiN ₃	1/1	Et ₂ O	0.07	-78	0	100 °
	2 0	1/5	Et ₂ O	0.07	-78	0	100 °
	^t Bu ₂ ClSiN ₃	1/1	Et ₂ O	0.07	-78	0	100 °
	2 5	1/5	Et ₂ O	0.07	-78	0	100 °
	^t Bu ₃ SiN ₃	1/3	Et ₂ O	0.13	-30	54	46 ^d
	5 5	1/12	Et ₂ O	0.05	-78	57	26 ^d
LiPh	^t Bu ₃ SiN ₃	1/20	Et ₂ O	0.03	- 78	0	100
Li'Bu	Me ₃ SiN ₃	1/11	Pe	0.03	- 78	0	43 °

^a Es bedeuten R''Br = 'Substitutionsprodukte' Me₂SiR-CBr(SiMe₃)₂ mit R = Me, "Bu, 'Bu, **1**·RN₃ = Dihydrotriazole oder deren Folgeprodukte. ^b Zerfall des [2+3]-Cycloaddukts **1**·Me₃SiN₃ um -15° C unter *Isomerisierung* zu [(Me₃Si)₂NSiMe₂]C(N₂)SiMe₃ und [2+3]-*Cycloreversion* zu (Me₃Si)₂CN₂/Me₂Si=NSiMe₃ im Reaktionsverhältnis 5: 1 (Et₂O), 0.7: 1 (THF), 1: 1 (Pe); Me₂Si=NSiMe₃ bildet mit überschüssigem Me₃SiN₃ das Insertionsprodukt Me₂SiN₃-N(SiMe₃)₂ [5].

° Zerfall von 1•'BuXSiN₃ bei -10° C (X = H) bzw. -70° C (X = Cl) unter [2+3]-Cycloreversion zu (Me₃Si)₂CN₂/Me₂Si=NSiX'Bu₂ [\rightarrow Dimeres in Azidabwesenheit (*n* = 1/1) oder [2+3]-Cycloaddukt in Azidabwesenheit (*n* = 1/5)].

^d Zerfall von 1[•](Bu₃SiN₃ < -70° C unter [2+3]-Cycloreversion zu (Me₃Si)₂CN₂/Me₂Si=NSi'Bu₃ (\rightarrow [2+3]-Cycloaddukt mit 'Bu₃SiN₃ [5]). Im Falle des Ansatzes bei -78° C bilden sich zusätzlich 17% (1)₂.

^e Bezüglich des Zerfalls von 1·Me₃SiN₃ vgl. [b] (Isomerisierung zu Cycloreversion ca. 1: 1). Zudem bilden sich 27% einer nicht identifizierten Substanz des Typus Me₂SiX–CH(SiMe₃)₂ [¹H-NMR (C₆D₆, iTMS): $\delta = -0.370$ (s; CH), 0.147 (s; 2 SiMe₃), 0.540 (s; SiMe₂); X möglicherweise N₃ oder Br). Es verbleiben 30% Me₂SiBrCBr(SiMe₃)₂.

Nach Erwärmen der Reaktionslösung A auf Abkondensieren Raumtemperatur. aller im Ölpumpenvakuum flüchtigen Anteile, Versetzen des Rückstands mit 5 ml Pentan, Abfiltrieren unlöslicher Abkondensieren Anteile. von Pentan und Umkristallisieren des Rückstands aus Methanol erhält man 1,3-Bis(di-tert-butylsilyl)-2,2,4,4-tetramethylcyclodisilazan [-Me₂Si-NSiH'Bu₂-]₂ in farblosen, viereckigen Säulen, Schmp. 119–201°C. — ¹H-NMR (C_6D_6 , iTMS): $\delta = 0.439$ (s; 2 SiMe₂), 1.068 (s; 4 'Bu), 3.89 (s; 2 SiH). — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 6.59$ (2 SiMe₂), 20.08 (4 CMe₃), 28.79 (4 CMe₃). — ²⁹Si-NMR $(C_6D_6, eTMS): \delta = 2.11 (2 \text{ SiH}^{\prime}Bu_2), 6.92 (2 \text{ SiMe}_2).$ MS: m/z = 373 (M⁺ - 'Bu; 100%). — Analyse $(C_{20}H_{50}N_2Si_4, M_r = 430.97)$. Ber. C 55.74, H 11.69, N 6.50, gef. C 56.03, H 10.62, N 6.43.

Nach Erwärmen der Reaktionslösung **B** auf Raumtemperatur, Abkondensieren aller im Hochvakuum flüchtigen Anteile, Aufnahme des Rückstands in 5 ml Pentan, Abfiltrieren unlöslicher Anteile (LiBr), Abkondensieren von Pentan und Umkristallisieren des Rückstands aus Pentan erhält man 3-(Di-tert-butylsilyl)-4,4-dimethyl-5,5-bis(trimethylsilyl)-1,2,3-triaza-4sila-1-cyclopenten Me₂Si=NSiH'Bu₂·'Bu₂HSiN₃ in farblosen Nadeln, Schmp. 115–117°C. — ¹H-NMR (C₆D₆, iTMS): $\delta = 0.248$ (s; SiMe₂), 1.128 (s; 4 'Bu), 3.98 (s; 2 SiH). — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta =$ 2.45 (SiMe₂), 20.28 (4 CMe₃), 28.47 (4 CMe₃). — ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 4.24$ (2 SiH'Bu₂), 5.44 (SiMe₂). — MS: m/z = 400 (M⁺; 18%), 343 (M⁺ - 'Bu; 42%). — Analyse (C₁₆H₃₈N₄Si₃, $M_r = 400.82$): Ber. C 53.93, H 11.06, N 13.99; gef. C 52.89, H 10.31, N 13.39.

4.1.2. Reaktion von $Me_2SiBr-CBr(SiMe_3)_2$ und $^{t}Bu_2ClSiN_3$ mit LiⁿBu

Zu einer auf -78° C gekühlten Lösung von 0.299 g (0.794 mmol) Me₂SiBr–CBr(SiMe₃)₂ und 0.180 g (0.819 mmol) 'Bu₂ClSiN₃ in 12 ml Et₂O (**A**) bzw. von 0.354 g (0.940 mmol) Me₂SiBr–CBr(SiMe₃)₂ und 1.090 g (4.959 mmol) 'Bu₂ClSiN₃ in 13 ml Et₂O (**B**) tropft man 0.794 bzw. 0.944 mmol Li"Bu in 6 ml Hexan. Laut ¹H-NMR zerfällt das hierbei wohl gebildete [2 + 3]-Cycloaddukt von Me₂Si=C(SiMe₃)₂ und 'Bu₂ClSiN₃ bereits unterhalb – 70°C unter [2 + 3]-Cycloreversion in (Me₃Si)₂CN₂ (Identifizierung: [5]) und das Silanimin Me₂Si=NSiCl'Bu₂, das quantitativ dimerisiert (**A**) oder 'Bu₂ClSiN₃ addiert (**B**).

Nach Erwärmen der Reaktionslösung A auf Raumtemperatur Abkondensieren aller im

Ölpumpenvakuum flüchtigen Anteile, Versetzen des Rückstands mit 5 ml Pentan, Abfiltrieren unlöslicher Anteile (LiBr), Abkondensieren von Pentan und Umkristallisieren aus Benzol erhält man 1,3-Bis(di-tertbutylchlorsilyl)-2,2,4,4-tetramethylcyclodisilazan [-Me₂-Si-NSiCl'Bu₂-]₂ in farblosen Stäbchen, Schmp. 211– 213°C. — ¹H-NMR (C₆D₆, iTMS): $\delta = 0.627$ (s; 2 SiMe₂), 1.090 (s; 4 'Bu). — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 7.80$ (2 SiMe₂), 23.18 (4 CMe₃), 28.23 (4 CMe₃). — ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 7.54$ (2 SiMe₂), 15.39 (2 SiCl'Bu₂). — MS: m/z = 441 (M⁺ – 'Bu; 35%).

Nach Erwärmen der Reaktionslösung **B** auf Raumtemperatur, Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile, Aufnahme des Rückstands in 5 ml Pentan, Abfiltrieren unlöslicher Anteile (LiBr), Abkondensieren von Pentan und Umkristallisieren des Rückstands aus 1:1 Et₂O/Pentan erhält man 3- (Di - tert - butylchlorsilyl) - 4,4 - dimethyl-5,5-bis(trimethylsilyl)-1,2,3-triaza-4-sila-1-cyclopenten Me2Si=NSiCl'Bu2·Bu2ClSiN3 in farblosen Stäbchen, Schmp. 150–153°C. — ¹H-NMR (C₆D₆, iTMS): $\delta =$ 0.548 (s; SiMe₂), 1.136 (s; 4 'Bu). - ¹³C{¹H}-NMR $(C_6D_6, iTMS): \delta = 4.18 (SiMe_2), 23.27 (4 CMe_3), 27.67$ (4 CMe₃). — ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 8.24$ (SiMe₂), 20.03 (2 SiCl^{*t*}Bu₂): — MS: m/z = 468 (M⁺; 13%), 411 (M⁺ – ^{*t*}Bu; 12%). — Analyse (C₁₆H₃₆- $Cl_2N_4Si_3$; $M_r = 469.72$): Ber. C 46.03, H 9.02, N 11.92; gef. C 45.23, H 8.74, N 10.91.

Anmerkung

Tropft man zu einer auf -78° C gekühlten Lösung von 1.11 mmol Me₂SiBr–CBr(SiMe₃)₂ und ca. 1.20 mmol 'Bu₂HSiN₃ in 10 ml Et₂O zunächst 1.11 mmol Li"Bu in 2 ml Hexan, dann 1.73 mmol 'Bu₂ClSiN₃ in 2 ml Et₂O, so enthält die auf Raumtemperatur erwärmte Reaktionslösung nach Ersatz von Et₂O zunächst durch Pentan (Abfiltrieren von LiBr), dann durch C₆D₆ laut ¹H-NMR — 10% Me₂Si=NSiH'Bu₂·'Bu₂HSiN₃ und 60% [-Me₂Si–NSiH'Bu₂-]₂ (Identifizierung s. oben) sowie 30% Me₂Si=NSiH'Bu₂·'Bu₂ClSiN₃ [¹H-NMR (C₆D₆, iTMS): $\delta = 0.392$ (s; SiMe₂), 1.109/1.153 (s; 2 'Bu/2 'Bu), 3.89 (s; SiH)].

4.2. Charakterisierung von Produkten aus Reaktionen von Me₂EX-CBr(SiMe₃)₂ mit MR Vgl. [2]

4.2.1. Thermolyse von $Me_2SiBr-CBr(SiMe_3)_2$ in Anwesenheit zweier Fänger für $Me_2Si=C(SiMe_3)_2$

Zur Bestimmung der relativen Reaktivitäten von LiR bzw. RN_3 sowie Ph_2CO und DMB hinsichtlich $Me_2Si=C(SiMe_3)_2$, erzeugt bei $-78^{\circ}C$ in Et_2O , verfährt man nach drei unterschiedlichen Methoden: Bei den Methoden **A** und **B** werden zu einer auf $-78^{\circ}C$ gekühlten Lösung von 0.134 g (0.356 mmol) $Me_2SiBr-CBr(SiMe_3)_2$ in Anwesenheit zweier Azide RN_3 bzw. einem Azid RN_3 und Ph_2CO oder DMB in 5-12 ml Et₂O 0.356 mmol LiⁿBu in Hexan getropft. Dann erwärmt man im Falle A die Reaktionsmischung Raumtemperatur, kondensiert alle auf im Ölpumpenvakuum flüchtigen Anteile ab, gibt 5 ml Pentan zum Rückstand und filtriert Ungelöstes (LiBr) ab. Im Falle von **B** wird das Reaktionsgemisch einige Zeit bei – 78°C belassen. Anschließend kondensiert man bei - 50°C alle im Hochvakuum flüchtigen Anteile ab und versetzt den Rückstand bei -78° C mit 3 ml Et₂O. Bei Methode C werden zu einer auf -78° C gekühlten Lösung von zwei unterschiedlichen Lithiumorganylen MR bzw. von einem Lithiumorganyl MR und einem Azid RN₃ in 6-12 ml Et₂O 0.095 g (0.252 mmol) Me₂SiBr-CBr(SiMe₃)₂ in 2 ml Et₂O getropft. Nach Zugabe von 1 ml MeOH erwärmt man das Reaktionsgemisch auf Raumtemperatur. Nach Ersatz von Et₂O durch Pentan wird Ungelöstes (LiBr) abfiltriert.

Art und relative Mengen der im Zuge nach A, B und C gebildetern Produkte wurden ¹H-NMR-spektroskopisch — nach Ersatz des Pentans durch C_6D_6 und/oder Et₂O — durch Integration geeigneter Produktprotonensignale bestimmt (im Falle B bei tiefer Temperatur), wobei die NMR Lösungsmittel so gewählt wurden, daß es zu keiner Überlagerung der Protonensignale im Silvlbereich kommen konnte. Auch wurden die beiden Fängerkonzentrationen so gewählt, daß die Mengen der gebildeten Produkte NMR-spektroskopisch gut bestimmbar waren. Sofern das Produkt eines Fängers (z.B. Me₃SiN₃; vgl. Tabelle 2) mehrere Folgeprodukte liefert, wurden die Mengen letzterer addiert, sofern ein Fänger (z.B. DMB [4]) mehrere Abfangprodukte liefert, wurde die Menge nur eines Produkts berücksichtigt.

Um möglichst konstante Fängerkonzentrationen zu gewährleisten, wurden die Fänger in großem Überschuß hinsichtlich der Menge an $Me_2SiBr-CBr(SiMe_3)_2$ eingesetzt. Andernfalls rechnete man mit mittleren Fängerkonzentrationen. Auch wurde im Falle der Reaktionen in Anwesenheit zweier Lithiumorganyle LiR¹ und LiR² die Menge der als Lithiierungsmittel hinsichtlich $Me_2SiBr-CBr(SiMe_3)_2$ wirkenden Komponente, z.B. LiR¹, von der Gesamtmenge des eingesetzten Lithiumorganyls (LiR¹) abgezogen.

Die relative Reaktionsgeschwindigkeit (Reaktivität) für die Bildung des Produkts I (aus 1 und Fänger I) hinsichtlich der Bildung des Produkts II (aus 1 und Fänger II) wurde aus den in Tabelle 3 wiedergegebenen relativen Produktmengen $P_{rel}(I)$ und $P_{rel}(II)$ unter Berücksichtigung der auf 1 (\equiv 1) bezogenen relativen Fängermengen $F_{rel}(I)$ und $F_{rel}(II)$ folgendermaßen berechnet: $R_{rel}(I)$ zu $R_{rel}(II) = P_{rel}(I)/F_{rel}(I)$ zu $P_{rel}(II)/F_{rel}(I)$ Auf diese Weise ergibt sich für die relativen Geschwindigkeiten der Reaktionen von Ph₂CO und 'BuN₃ mit Me₂Si=C(SiMe₃)₂ (1) (vgl. Tabelle 3): $R_{rel}(Ph_2CO)$ zu $R_{rel}('BuN_3) = 1.87/2.04$ zu 1/2.40 = 2.2:1.0. Die auf diese Weise aus den Werten der Tabelle 3 für MR, RN₃, Ph₂CO und DMB berechneten und auf $R_{rel}(Butadien) \equiv 1$ bezogenen relativen Reaktionsgeschwindigkeiten (Reaktivitäten) sind in Tabelle 1 zusammengefaßt.

Anmerkungen

(i) Eine Abschätzung der relativen Reaktivitäten von $Me_2SiBr-CLi(SiMe_3)_2$ und $Me_2SiMe-CLi(SiMe_3)_2 \equiv$ LiC(SiMe₃)₃ bezüglich 1 lieferte die Umsetzung von 0.551 mmol Me₂SiBr-CLi(SiMe₃)₂ (aus 0.551 mmol Me₂SiBr-CBr(SiMe₃)₂ und 0.551 mmol LiPh in Et₂O bei -110°C nach einer halbstündigen Reaktionszeit) mit 2.341 mmol LiC(SiMe₃)₃ × 2THF in 10 ml Et₂O bei -90° C. Laut ¹H-NMR (C₆D₆) enthält die auf Raumtemperatur erwärmte und mit 1 ml MeOH versetzte Reaktionslösung dann (1)₂ als Produkt der Reaktion von 1 mit Me₂SiBr-CLi(SiMe₃)₂ (mittlere Menge 0.551/ 2 = 0.275 mmol) sowie Me₂Si[C(SiMe₃)₃]-CH- $(SiMe_3)_2$ (mittlere Menge 2.341 — [$\frac{3}{4} \times 0.551$]: 2 = 2.134 mmol) im Ausbeuteverhältnis 3: 1. Hieraus berechnet sich $R_{rel}[Me_2SiBr-CLi(SiMe_3)_2]$ zu $R_{rel}[LiC(SiMe_3)_3] =$ 3/0.275: 1/2.134 = 23: 1. — (ii) (1)₂ bildet sich aus Me₂SiCl-CLi(SiMe₃)₂ rascher als aus Me₂SiBr-CLi(SiMe₃)₂ (vgl. Tabelle 1), was — sofern die LiX-Eliminierung in beiden Fällen vergleichbar rasch erfolgt - auf eine höhere Reaktivität in ersterem Falle hinsichtlich 1 als in letzterem Falle deutet. Da Me₂SiOR-CLi(SiMe₃)₂ offensichtlich hohe Fängerqualitäten bezüglich 1 aufweist (vgl. [2]), Me₂SiMe-CLi(SiMe₃)₂ dagegen geringe Fängerqualitäten (vgl. Tabelle 1), nimmt die Reaktivität von Me₂SiX-CLi(SiMe₃)₂ bezüglich 1 wohl u.a. mit steigender Elektronegativität von X zu. — (iii) Me₂SiBr-CLi(SiMe₃)₂ \equiv LiR' liefert im Solvens Et₂O und Anwesenheit von DMB im Überschuß ausschließlich DMB-Abfangprodukte, in THF ausschließlich das Cyclobutan (1)₂. Offensichtlich ist also die Insertionstendenz von LiR' in THF größer als in Et₂O.

4.3. Kinetiken der Zerfälle von $Me_2EX-CM(SiMe_3)_2$ (E = Si, Ge) (gemeinsam mit O. Schieda und Ch.-K. Kim)

Man thermolysiert in evakuierten, abgeschlossenen NMR-Rohren Lösungen von $Me_2EX-CLi(SiMe_3)_2$, erzeugt aus $Me_2EX-CBr(SiMe_3)_2$ in organischen Solvenzien und äquimolaren Mengen Alkalimetallorganylen LiR bei ausreichend niedrigen Temperaturen, in Ab- oder Anwesenheit von DMB bei einer vorgegebenen Zersetzungstemperatur. Die zeitliche Abnahme der Menge an $Me_2EX-CLi(SiMe_3)_2$ bzw. zeitliche Zunahme der Menge an 'Cyclobutanen' $(1)_2$ und $(2)_2$ oder DMB-Abfangprodukten [3] wird dann ¹H-NMR-spektroskopisch bestimmt.

Tabelle 3

Bestimmung relativer Reaktionsgeschwindigkeiten (Reaktivitäten) zweier Fänger I und II hinsichtlich $Me_2Si=C(SiMe_3)_2$ (1), erzeugt aus $Me_2SiBr-CBr(SiMe_3)_2$ und LiR (= einer der Fänger oder LiⁿBu, falls kein LiR-Fänger anwesend) in Et₂O bei $-78^{\circ}C^{\circ}$

Reakt. Typ	Fänger I/II b,c	$F_{rel}(I)$: $F_{rel}(II)$ Menge $1 \equiv 1$	Gefunden $P_{rel}(I):P_{rel}(II)$
B ^d	Ph ₂ CO/Me ₃ SiN ₃	3.81:4.22	2.62:1
А	Ph ₂ CO/ ^{<i>t</i>} BuN ₃	2.04:2.40	1.87:1
А	'BuN ₃ /Me ₃ SiN ₃	2.66:2.51	1.40:1
А	['] BuN ₃ / ['] Bu ₂ MeSiN ₃	2.14:26.16	2.08:1
А	'BuN ₃ /'Bu ₂ HSiN ₃	1.29:17.28	1.26:1
А	^t BuN ₃ / ^t Bu ₂ ClSiN ₃	0.93:20.00	18.20:1
B ^e	'BuMe ₂ SiN ₃ /'Bu ₂ MeSiN ₃	6.01:5.66	3.81:1
А	Ph ₃ SiN ₃ / 'Bu ₂ MeSiN ₃	9.56:1.19	1.08:1
С	Ph ₃ SiN ₃ /LiDisyl	0.91:4.82	1.89:1
С	'Bu ₃ SiN ₃ /LiDisyl	23.29:1.91	2.23:1
С	LiDisyl/DMB	0.90:20.00	3.36:1 ^f
А	'Bu ₃ SiN ₃ /DMB	19.67:19.63	13.00:1 ^f
С	LiDisyl/LiTrisyl	0.72:9.37	6.32:1
С	LiPh/LiDisyl	1.15:5.17	2.15:1
С	Li"Bu/LiPh	3.95:4.95	3.35:1
С	LiPh/Li'Bu	5.45:4.45	9.34:1
C ^g	Li"Bu/Li'Bu	1.63:17.74	4.92:1
С	LiMe/Li ⁿ Bu	4.93:23.64	1.84:1

^a Aufgeführt sind die vorgegebenen relativen Fängermengen $F_{rel}(I)$ und $F_{rel}(II)$, bezogen auf die Menge an Me₂SiBr-CBr(SiMe₃)₂ = Menge an $1 \equiv 1$, sowie die gefundenen relativen Produktmengen $P_{rel}(I)$ und $P_{rel}(II)$.

^b LiDisyl = LiCH(SiMe₃)₂; LiTrisyl = LiC(SiMe₃)₃ × 2THF.

^c Bezüglich der relativen Reaktivität von Me₂SiBr-CLi(SiMe₃)₂ und LiC(SiMe₃)₃ vgl. Abschnitt 4.

^d NMR-Meßtemperatur –40°C.

^e NMR-Meβtemperatur –15°C.

^f [4+2]-Cycloaddukt von 1 mit DMB. Im Falle des LiCH(SiMe₃)₂/DMB-Ansatzes entsteht zusätzlich (1)₂ in Spuren.

^g Solvens = Pentan.

Anerkennung

Wir danken der Deutschen Forschungsgemeinschaft für die Unterstützung der Untersuchungen mit Sachund Personalmitteln.

Literatur

- 132. Mitteilung über Silicium und seine Gruppenhomologen. Zugleich 57. Mitteilung über ungesättigte Verbindungen des Siliciums und seiner Gruppenhomologen. 131. (56.) Mitteilung: Ref. [2].
- [2] N. Wiberg, T. Passler, S. Wagner, K. Polborn, J. Organomet. 598 (2000) 292.
- [3] N. Wiberg, S. Wagner, S.-K. Vasisht, Chem. Eur. J. 4 (1998) 2571 und dort zit. Lit.
- [4] (a) N. Wiberg, G. Preiner, Angew. Chem. 89 (1977) 343; Angew. Chem. Int. Ed. Engl. 16 (1977) 328. (b) N. Wiberg G. Preiner, O.

Schieda, Chem. Ber. 114 (1981) 2087, 3518. (c) N.Wiberg, G. Preiner, O. Schieda, G. Fischer, Chem. Ber. 114 (1981) 3505. (d) N. Wiberg, J. Organomet. Chem. 273 (1984) 141.

- [5] N. Wiberg, P. Karampatses, Ch.-K. Kim, Chem. Ber. 120 (1987) 1203.
- [6] (a) N. Wiberg, G. Wagner, Chem. Ber. 119 (1986) 1455, 1467.
 (b) N. Wiberg, G. Wagner, G. Reeber, J. Riede, G. Müller, Organometallics 6 (1987) 35.
- [7] (a) N. Wiberg, Ch.-K. Kim, Chem. Ber. 119 (1986) 2966, 2980.
 (b) N. Wiberg, J. Organomet. Chem. 373 (1984) 141.
- [8] N. Wiberg, S.-K. Vasisht, Angew. Chem. 103 (1991) 105; Angew. Chem. Int. Ed. Engl. 30 (1991) 93.
- [9] N. Wiberg, G. Preiner, G. Wagner, H. Köpf, Z. Naturforsch. Teil B 42 (1987) 1062.
- [10] J. Miller, Tetrahedron Lett. 34 (1975) 2959.
- [11] D. Parker, L. Sommer, J. Am. Chem. Soc. 98 (1976) 618.
- [12] (a) M. Weidenbruch, H. Pesel, Z. Naturforsch. Teil B 33 (1978) 1465. (b) L. Sommer, P. Nowakowski, J. Organomet. Chem. 178 (1979) 895.
- [13] (a) J. Thayer, R. West, Inorg. Chem. 3 (1964) 406. (b) N. Wiberg, B. Neruda, Chem. Ber. 99 (1966) 740.